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The method of half-gpace moments [1] is used to derive an analytic expression for the veloc-
ity of isothermal creep of a binary gas mixture along a flat surface. The distribution func-
tions for the gas molecules are found from the solution of the Boltzmann kinetic equation
with a model collision integral.

We assume that a binary mixture of gases with densities n; and n, and molecular masses m; and m,
fillg the x > 0 half-space above the x = 0 plane. Far from the surface, the gas mixture is moving along the
y axis at some average-mass velocity u, = ug + (du/dx)eox, where the gradient of the average-mass velocity,
(du/dx), is assumed given, and u, is the velocity of isothermal creep, which is to be determined. We also
assume
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Here V;j is the average thermal velocity of component i in the mixture. The medium is assumed homo-
geneous along the z direction,

The behavior of the system is governed completely by the distribution functions fj for the molecules
of component i. These functions are the solutions of a system of two Boltzmann kinetic equations, which
can be written in this case as [2]
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vij and vj; are the analogs ofthefrequenmes of collisions between molecules of the same species and between
different molecules, and vi is the velocity of the molecules of component i.

The quantities nj, u;, and T are determined from
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and integrating over the entire corresponding velocity space, we find a system of differential equations for
the functions ajj(x) and af (x):
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Here the parameter K; is determined from the boundary condition at infinity, i.e., from the require-

ment that the functions in (4) satisfy system (2) in the limit x — =, where $ — 0. From this condition we
find
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The solution of Eq. (8) is
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The constants C, and C, and the quantities uyy and u,, are found from boundary conditions (3) to be
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Using (11), we find the creep velocity of a binary gas mixture along a flat surface to be
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We turn now to the case of the isothermal creep of a single~component gas. For this case we let the

density of one component of the mixture (say,the second) vanish. Then the second term in {12) vanighes,
B; and p become
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Then from (12) we find
Uy = 5 Vﬂ—h[ (—aq) By —1 } 2—q ( du ) , 14)
4 2q, B+ (1—a) B dx Je
where
B =0230; B, =—0979 B, =0.110, (15)
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In the case q = 1 (the case of purely diffuse reflection), we find from (14), using (15),

u°=1.106x( ZZ ) . (16)

This result differs by only 2% from the isothermal creep velocity found in [4].
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